“MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS”

MSR = Mean Regression Sum of Squares
MSE = Mean Squared Error
RSS = Regression Sum of Squares
SSE = Sum of Squared Errors/Residuals
α = Level of Significance
ML = Machine Learning

1. INTRODUCTION

- Multiple linear regression models are more sophisticated.
- They incorporate more than one independent variable.

2. MULTIPLE LINEAR REGRESSIONS

2.1 Assumption of the Multiple Linear Regression Model

- Relationship b/w Y and \(X_1, X_2, X_3, \ldots, X_n\) is linear.
- Independent variables are not random and no exact linear relationship exists b/w 2 or more independent variables.
- Expected value of error terms is 0.
- Variance of error term is same for all observations.
- Error term is uncorrelated across observations.
- Error term is normally distributed.

2.2 Predicting the Dependent Variable in a Multiple Regression Model

- Obtain estimates of regression parameters.
 - estimates = \(b_0, b_1, b_2, \ldots, b_n\)
 - regression parameters = \(b_0, b_1, b_2, \ldots, b_n\)
- Determine assumed values of \(\hat{X}_{1i}, \hat{X}_{2i}, \ldots, \hat{X}_{ki}\).
- Compute predicted value of \(\hat{Y}_i = \hat{b}_0 + b_1X_{1i} + b_2X_{2i} + \ldots + b_iX_{ki}\)
- To predict dependent variable:
 - Be confident that assumptions of the regression are met.
 - Predictions regarding X must be within reliable range of data used to estimate the model.

2.3 Testing Whether All Population Regression Coefficients Equals Zero

- \(H_0 \Rightarrow \) All slope coefficients are simultaneously = 0, none of the X variable helps explain Y.
- To test \(H_0\), F-test is used.
- T-test cannot be used.
- \(F = \frac{\text{MSR}}{\text{MSE}} = \frac{\text{SSE}/(n-(k+1))}{\text{RSS}/(k)}\)
- \(\text{RSS} = \sum_{i=1}^{n} (Y_i - \bar{Y})^2\)
- \(\text{SSE} = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2\)
- Decision rule \(\Rightarrow\) reject \(H_0\) if \(F > F_c\) (for given α).
 - It is a one-tailed test.
 - \(d\) numerator = k
 - \(d\) denominator = n-(k+1).
 - For k and n the test statistic representing \(H_0\) all slope coefficients are equal to 0, is \(F_{k,n-(k+1)}\).
 - In F-distribution table \(F_{0.05,k,n-(k+1)}\) where k represents column and n-(k+1) represents row.
 - Significance of F in ANOVA table represents ‘p value’.
 - \(\uparrow\) F-statistic \(\downarrow\) chances of Type I error.

2.4 Adjusted \(R^2\)

- \(R^2 \uparrow\) with addition of independent variables (X) in regression
- Adjusted \(R^2 (R_{adj}^2) = 1 - \left(\frac{n-1}{n-(k+1)}\right)(1 - R^2)\).
- When \(k \geq 1 \Rightarrow R^2 > R_{adj}^2\)
- \(R_{adj}^2\) can be –ve but \(R^2\) is always +ve.
- If \(R_{adj}^2\) is used for comparing regression models:
 - Sample size must be the same.
 - Dependent variable is defined in the same way.
 - \(\uparrow R_{adj}^2\) Does not necessarily indicate regression is well specified.

Copyright © FinQuiz.com. All rights reserved.
3. USING DUMMY VARIABLES IN REGRESSION

- Dummy variable \(\Rightarrow \) takes 1 if particular condition is true & 0 when it is false.
- Diligence is required in choosing no. of dummy variables.
- Usually n-1 dummy variables are used where n= no. of categories.

4. VIOLATIONS OF REGRESSION ASSUMPTIONS

4.1 Heteroskedasticity

- Variance of errors differs across observations \(\Rightarrow \) heteroskedastic
- Variance of errors is similar across observations \(\Rightarrow \) homoskedastic
- Usually no systematic relationship exists b/w X & regression residuals.
- If systematic relationship is present \(\Rightarrow \) heteroskedasticity can exist.

4.1.1 The Consequence of Heteroskedasticity

- It can lead to mistake in inference. Does not affect consistency.
- F-test becomes unreliable.
- Due to biased estimators of standard errors, t-test also becomes unreliable.
- Heteroskedasticity effects may include:
 - underestimation of estimated standard errors
 - inflated t-statistic
- Ignoring heteroskedasticity leads to significant relationship that does not exist actually.
- It becomes more serious while developing investment strategy using regression analysis.
- Unconditional heteroskedasticity \(\Rightarrow \) when heteroskedasticity of error variance is not correlated with independent variables in the multiple regression.
 - Create major problems for statistical inference.
- Conditional heteroskedasticity \(\Rightarrow \) when heteroskedasticity of error variance is correlated with the independent variables.
 - It causes most problems.
 - Can be tested & corrected easily through many statistically software packages.

4.1.2 Testing for Heteroskedasticity

Breush-Pagan test is widely used.
- Regression squared residuals of regression on independent variables.
 - Independent variables explain much of the variation of errors \(\Rightarrow \) conditional heteroskedasticity exists.
 - \(H_0 \) = no conditional heteroskedasticity exists.
 - \(H_a \) = conditional heteroskedasticity exists.
- Under Breush-pagan test statistic = \(nR^2 \)
 - \(R^2 \): from regression of squared residuals on X
 - Critical value \(\Rightarrow \) calculated \(\chi^2 \) distribution.
 - \(df \) = no. of independent variables
 - Reject \(H_0 \) if test-static > critical value.

4.2 Serial Correlation

- Regression errors correlated across observations.
- Usually arises in time-series regression.

4.3 Multicollinearity

- Occurs when two or more independent variables (X) are highly correlated with each other.
- Regression can be estimated but result becomes problematic.
- Serious practical concern due to commonly found approximate linear relation among financial variables.

4.4 Summarizing the Issues

Robust Standard Errors
- Corrects standard error of estimated coefficients.
- Also known as heteroskedasticity consistent standards errors or white-corrected standards errors.

Generalized Least Squares
- Modify original equation.
- Requires economic expertise to implement correctly on financial data.

Copyright © FinQuiz.com. All rights reserved.
4.1.2 Testing for Heteroskedasticity

- Breush-Pagan test is widely used.
- Regression squared residuals of regression on independent variables.
- Independent variables explain much of the variation of errors \(\implies \) conditional heteroskedasticity exists.
- \(H_0 \) = no conditional heteroskedasticity exists.
- \(H_A \) = conditional heteroskedasticity exists.
- Under Breush-Pagan test statistic = \[n \frac{R^2}{R_2^2} \]: from regression of squared residuals on \(X \)
- Critical value \(\chi^2 \) distribution.
- \(df = \) no. of independent variables
- Reject \(H_0 \) if test statistic > critical value.

4.2 Serial Correlation

4.2.1 The Consequences of Serial Correlation

- Incorrect estimate of regression coefficient standard errors
- Parameter estimates become inconsistent & invalid when \(Y \) is lagged onto \(X \) under serial correlation.
- Positive serial correlation \(\implies \) positive (negative) errors \(\uparrow \) chance of positive (negative) errors
- Negative serial correlation \(\implies \) positive (negative) errors \(\uparrow \) chance of negative (positive) errors
- It leads to wrong inferences
- If positive serial correlation:
 - Standard errors underestimated
 - T-statistic & F-statistics inflated
 - Type-I error \(\uparrow \)
- If negative serial correlation
 - Standard errors overestimated
 - T-statistics & F-statistics understated
 - Type-II error \(\uparrow \)

4.2.2 Testing for Serial Correlation

- Variety of tests, most common \(\rightarrow \) Durbin-Watson test
- \(DW = \frac{\sum_{t=2}^{T} (\hat{e}_t - \hat{e}_{t-1})^2}{\sum_{t=1}^{T} \hat{e}_t^2} \)
 - Where \(\hat{e}_t \) = regression residual for period \(t \).
 - For large sample size DW statistic is approximately:
 \(\rightarrow DW = 2(1-r) \)
 \(\rightarrow \) where \(r \) = sample correlation b/w regression residuals of \(t \) and \(t-1 \)
- Values of DW can range from 0 to 4.
- \(DW = 2 \Rightarrow r=0 \Rightarrow \) no serial correlation.
- \(DW = 0 \Rightarrow r=1 \Rightarrow \) perfectly positively serially correlated.
- \(DW = 4 \Rightarrow r = -1 \Rightarrow \) perfectly negatively serially correlated.
- For positive serial correlation:
 - \(H_0 \) \(\Rightarrow \) No positive serial correlation
 - \(H_A \) \(\Rightarrow \) Positive serial correlation
 - \(DW < dl \Rightarrow \) reject \(H_0 \)
 - \(DW > du \Rightarrow \) do not reject \(H_0 \)
 \(dl \leq DW \leq du \Rightarrow \) inconclusive.
- For negative serial correlation:
 - \(H_0 \) \(\Rightarrow \) No negative serial correlation.
 - \(H_A \) \(\Rightarrow \) Negative serial correlation.
 - \(DW > 4 - dl \Rightarrow \) Reject \(H_0 \)
 - \(DW < 4 - du \Rightarrow \) do not reject \(H_0 \)
 - \(4 - du \leq DW \leq 4 - dl \Rightarrow \) inconclusive.

4.2.3 Correcting for Serial Correlation

- Adjust the coefficient standard errors. \(\rightarrow \) Recommended method
- Hansen’s method \(\Rightarrow \) most prevalent one.
- Modify regression equation.
- Extreme care is required.
- May lead to inconsistent parameters estimates.
4.3 Multicollinearity

- Multicollinearity is a matter of degree rather than the presence / absence.
- Pair wise correlation does not necessarily indicate presence of Multicollinearity
- Pair wise correlation does not necessarily indicate absence of Multicollinearity
- With 2 independent variables \Rightarrow correlation is a useful indicator.
- R^2 significant, F-statistic significant, insignificant t-statistic on slope coefficients \Rightarrow classic symptom of Multicollinearity

4.3.1 The Consequences of Multicollinearity

- Difficulty in detecting significant relationships.
- Estimates become extremely imprecise & unreliable though consistency is unaffected.
- F-statistic is unaffected.
- Standard errors of regression \uparrow.
 - Causing insignificant t-tests
 - Wide confidence interval
 - Type II error \uparrow

4.3.2 Detecting Multicollinearity

4.3.3 Correcting Multicollinearity

- Exclude one or more regression variables.
- In many cases, experimentation is done to determine variable causing Multicollinearity

4.4 Summarizing the Issues

<table>
<thead>
<tr>
<th>Problem</th>
<th>How to detect</th>
<th>Consequences</th>
<th>Possible Corrections</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Conditional) Heteroskedasticity</td>
<td>Plot residuals or use Breusch-Pagan test</td>
<td>Wrong inferences; incorrect standard errors</td>
<td>Use robust standard errors or GLS</td>
</tr>
<tr>
<td>Serial correlation</td>
<td>Durbin-Watson Test</td>
<td>Wrong inferences; incorrect standard errors</td>
<td>Use robust standard errors (Hansen’s method) or modifying equation</td>
</tr>
<tr>
<td>Multicollinearity</td>
<td>High R^2 and significant F-statistic but low t-statistic</td>
<td>Wrong inferences;</td>
<td>Omit variable</td>
</tr>
</tbody>
</table>
5. MODEL SPECIFICATION AND ERRORS IN SPECIFICATION

- Model specification ⇒ set of variables included in regression.
- Incorrect specification leads to biased & inconsistent parameters

5.1 Principles of Model Specification

- Model grounded on economic reasoning.
- Functional form of variables compatible with nature of variables
- Parsimonious ⇒ each included variable should play an essential role
- Model is examined for the violation of regression assumptions.
- Model is tested for the validity & usefulness of the out of sample data.

5.2 Misspecified Functional Form

- One or more variables are omitted. If omitted variable is correlated with remaining variable, error term will also be correlated with the latter and the:
 - result can be biased & inconsistent.
 - estimated standard errors of the coefficients will be inconsistent.
- One or more variables may require transformation.
- Pooling of data from different samples that should not be pooled.
 - Can lead to spurious results.

5.3 Times-Series Misspecification (Independent Variables Correlated with Errors)

- Including lagged variables (dependent) as independent with serial correlation.
- Including a function of the dependent variable as an independent variable.
- Independent variables measured with error

5.4 Other Types of Time-Series Misspecification

- Non-stationarity: variable properties, e.g. mean, are not constant through time.
- In practice non-stationarity is a serious problem.

6. MODELS WITH QUALITATIVE DEPENDENT VARIABLES

- Qualitative dependent variables ⇒ dummy variables used as dependent instead of independent.
- Probit model ⇒ based on normal distribution estimates the probability:
 - of discrete outcome, given values of independent variables used to explain that outcome.
 - that Y=1, implying a condition is met.
- Logit model:
 - Identical to Probit model.
 - Based on logistic distribution.
- Both Logit and Probit models must be estimated using maximum likelihood methods.
- Discriminate analysis ⇒ can be used to create an overall score that is used for classification.
- Qualitative dependent variable models can be used for portfolio management and business management.
6.3. Types of Data Analytics

- Six focuses of data analytics:
 i. Measuring correlations
 ii. Making predictions
 iii. Making casual inferences
 iv. Classifying data
 v. Sorting data into clusters
 vi. Reducing the dimension of data

Two broad categories of ML are:
1. Supervised learning: uses labeled training data and process that info. to find the output. Supervised learning follows the logic of 'X leads to Y'.
2. Unsupervised learning: does not make use of labelled training data and does not follow the logic of 'X leads to Y'. There are no outcomes to match to, however, the input data is analyzed, and the program discovers structures within the data itself.

7.4. Machine Learning Algorithms

7.4.1. Supervised Learning

- Penalized regression
- Classification & Regression Trees
- Random Forests
- Neural Networks

Some simple steps to train the ML models are:
1. Define the ML algorithm.
2. Specify the hyperparameters used in the ML technique.
3. Divide datasets into two major groups:
 - Training sample
 - Validation sample
4. Evaluate model-fit through validation sample and tune the model’s hyperparameters.
5. Repeat the training cycles for some given number of times or until the required performance level is achieved.

7.4.2. Unsupervised Learning

- Clustering
- Dimension Reduction

Clustering algorithms discover the inherent groupings in the data without any predefined class labels. Two clustering approaches are:
- Bottom-up clustering: Each observation starts in its own cluster, and then assembles with other clusters progressively based on some criteria in a non-overlapping manner.
- Top-down clustering: All observations begin as one cluster, and then split into smaller and smaller clusters gradually.

K-means Algorithm is a type of bottom-up clustering algorithm where data is divided into k-clusters based on the concept of two geometric ideas 'Centroid' (average position of points in the cluster) and 'Euclidian' (straight line distance b/w two points).

- Reduces the no. of random variables for complex datasets
- Principal component analysis (PCA) is an established method for dimension reduction. PCA reduces highly correlated data variables into fewer, necessary, uncorrelated composite variables.
- Dimension reduction techniques are applicable to numerical, textual or visual data.