Reading 5: Time Value of Money

- 1. Interest Rate (*i*)
 - *i* = Rf + Inf P + Default Risk P + Liquidity P + Maturity P
 - Nominal Rf *i* rate = Real Rf *i* Rate + Inf P
 - *i* rate as a growth rate = $g = \left(\frac{FV_N}{PV}\right)^{\frac{1}{N}} 1$
- 2. PV and FV of CF =
 - $PV = \frac{FV}{(1+r)^N}$
 - PV of Perpetuity = $\frac{PMT}{r}$
 - PV (for more than one Compounding per year) = PV= $FV_N \left(1 + \frac{r_s}{m}\right)^{-m \times N}$ where r_s = stated ann i - rate
 - $FV_N = PV(1+r)^N$
 - FV (for more than one Compounding per year) = FV_N = $\left(1 + \frac{r_s}{m}\right)^{m \times N}$
 - FV (for Continuous Compounding) = FV_N = $PVe^{r_S \times N}$
 - Solving for N = $\frac{LN(\frac{FV}{PV})}{LN(1+r)}$ (where LN = natural log)
- 4. Stated & Effective Rates
 - Periodic *i* Rate = <u>Stated Ann i Rate</u> No of Compounding Periods in One Year
 - Effective (or Equivalent) Ann Rate
 (EAR = EFF%) =
 (1 + Periodic i Rate)^m 1

- EAR (with Continuous Compounding) = EAR = $e^{r_s} - 1$
- 5. PV & FV of Ordinary Annuity

•
$$PV_{OA} = \sum_{t=1}^{n} \frac{PMT}{(1+r)^t} = PMT \left[\frac{1 - \frac{1}{(1+r)^N}}{r} \right]$$

- $FV_{OA} = \sum_{t=1}^{n} \left(PMT_t(1+r) \right)^{N-t} = PMT\left[\frac{(1+r)^{N-1}}{r} \right]$
- Size of Annuity Payment = $PMT = \frac{PV}{PV \text{ of Annuity Factor}}$

• PV of Annuity Factor =
$$\frac{1 - \frac{1 - \frac{1}{\left[1 + \left(\frac{r_s}{m}\right)\right]^{m \times N}}}{\frac{r_s}{m}}$$

6. PV & FV of Annuity Due • $PV_{AD} = PMT \left[\frac{1-\frac{1}{(1+r)N}}{r}\right] + PMT$ at $t = PV_{OA} + PMT$ • $FV_{AD} = PMT \left[\frac{(1+r)^N - 1}{r}\right] (1+r) =$

$$FV_{OA} \times (1{+}r)$$

Reading 6: Discounted Cash Flow Applications

1. NPV =
$$\sum_{t=1}^{n} \frac{CF_t}{(1+r)^t} - cf_0$$

2. IRR (when project's CFs are perpetuity) = NPV = - I_O + $\frac{\overline{CF}}{IRR}$ = 0

3. HPR =
$$\frac{(P_1 - P_0 + D_1)}{P_0}$$

4. MMWR = $\sum_{i=0}^{T} \frac{CF}{(1+IRR)^{t}} = 0$ (IRR represents the MWR)

- 5. TWR:
 - TWR (when no external CF) = r_{TWR} = HPR = $r_t = \frac{MV_1 - MV_0}{MV_0}$
 - TWR (for more than one periods) = $r_{TWR} = [(1+r_{t,1}) \times (1+r_{t,2}) \times \dots (1+r_{t,n})] - 1$
 - Annualized TWR (when investment is for more than one year) = $[(1 + R_1)(1 + R_2 ... + (1 + R_n))]^{\frac{1}{n}} 1$
 - TWR (for the year) = $r_{TWR} = [(1+R_1) \times (1+R_2) \times \dots (1+R_{365})] 1$ where $R_1 = \frac{MV_1 MV_0}{MV_0}$
- 6. Bank Discount Yield = BDY = $r_{BD} = \frac{360}{n} \frac{Par Price}{Par}$ therefore Price = Par $\left(1 \frac{n \times r_{BD}}{360}\right)$
- 7. Holding Period Yield = HPY = $\frac{(P_1 P_0 + D_1)}{P_0}$
- 8. Effective Annual Yield = EAY = $(1 + HPY)^{365/t} 1$ (Rule: EAY > BDY)
- 9. Money Market Yield (or CD equivalent Yield) r_{MM} :

•
$$r_{\rm MM} = {\rm HPY} \times \left(\frac{360}{t}\right)$$

• $r_{MM} = (r_{BD}) \times Face Value of the Treasury Bill Purchase Price$

- $r_{MM} = \frac{360 (r_{BD})}{360 (t)(r_{BD})}$ (Rule: $r_{MM} > r_{BD}$)
- 10. Bond Equivalent Yield = BDY = Semiannual Yield × 2

Reading 7: Statistical Concepts & Market Returns

- 1. Range = Max Value Min Value
- 2. Class Interval = $i \ge \frac{H-L}{k}$ where
 - i = class interval
 - H = highest value
- L = lowest value, k = No. of classes.
- Absolute Frequency = Actual No of Observations (obvs) in a given class interval
- 4. Relative Frequency = $\frac{Absolute Frequency}{Total No of Obvs}$
- 5. Cumulative Absolute Frequency = Add up the Absolute Frequencies
- 6. Cumulative Relative Frequency = Add up the Relative Frequencies
- 7. Arithmetic Mean = $\frac{Sum of obvs in database}{No.of obvs in the database}$
- Median = Middle No (when observations are arranged in ascending/descending order)

Formula Sheet

- For Even no of obvs locate median at $\frac{n}{2}$
- For Odd no. of obvs locate median at $\frac{n+1}{2}$

٠

- 9. Mode = obvs that occurs most frequently in the distribution
- 10. Weighted Mean = $\overline{X_w} = \sum_{i=1}^n w_i X_i =$ (w₁X₁+ w₂X₂+...+ w_nX_n)
- 11. Geometric Mean = GM = $\sqrt[n]{X_1X_2...X_n}$ with X_i≥0 for i = 1,2,...n.

12. Harmonic Mean = H.M =
$$\overline{X_H} = \frac{n}{\sum_{i=1}^{n} (\frac{1}{X_i})}$$

13. Population Mean =
$$\mu = \frac{\sum_{i=1}^{n} X_i}{N}$$
 with $X_i > 0$ for i = 1,2,...,n.

- 14. Sample Mean = $\overline{X} = \frac{\sum_{i=1}^{n} x_i}{n}$ where n = number of observation in the sample
- 15. Measures of Location:
 - Quartiles = $\frac{Distribution}{4}$
 - Quintiles = $\frac{Distribution}{5}$

• Deciles =
$$\frac{Distribution}{10}$$
,

• Percentiles = $L_y = (n+1)\frac{y}{100}$

16. Mean Absolute Deviation = MAD = $\frac{\sum_{i=1}^{n} |x_t - \bar{x}|}{n}$

17. Population Var =
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

18. Population S.D = $\sqrt{\sigma^2} = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$

19. Sample Var = s² =
$$\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

20. Sample S.D = s =
$$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

21. Semi-var =
$$\sum_{For \ all \ X_i \leq \overline{X}} \frac{(X_i - \overline{X})^2}{n-1}$$

- 22. Semi-deviation (Semi S.D) = $\sqrt{semivariance} = \sqrt{\sum_{For all X_i \le \bar{X}} \frac{(X_i - \bar{X})^2}{n-1}}$
- 23. Target Semi-var = $\sum_{For \ all \ X_i \le B} \frac{(X_i B)^2}{n-1}$ where B = Target Value
- 24. Target Semi-Deviation = $\sqrt{target semivariance} =$ $\sqrt{\sum_{For all X_i \le B} \frac{(X_i - B)^2}{n - 1}}$
- 25. Coefficient of Variation = $CV = \left(\frac{s}{\bar{x}}\right)$ where s= sample S.D and \bar{X} = sample mean
- 26. Sharpe Ratio = $\frac{Mean Portfolio R Mean Rf R}{S.D of Portfolio R}$
- 27. Excess Kurtosis = Kurtosis -3

28. Geometric Mean R \approx Arithmetic Mean R $-\frac{Variance of R}{2}$

Reading 8: Probability Concepts

- 1. Empirical Prob of an event $E = P(E) = \frac{Prob of event E}{Total Prob}$
- 2. Odds for event $E = \frac{Prob \ of \ E}{1 Prob \ of \ E}$
- 3. Odds against event $E = \frac{1 Prob \ of \ E}{Prob \ of \ E}$
- 4. Conditional Prob of A given that B has occurred = $P(A \setminus B) = \frac{P(AB)}{P(B)} \rightarrow P(B) \neq 0.$
- 5. Multiplication Rule (Joint probability that both events will happen):

 $P(A \text{ and } B) = P(AB) = P(A | B) \times P(B)$ $P(B \text{ and } A) = P(BA) = P(B | A) \times P(A)$

6. Addition Rule (Prob that event A or B will occur):

P(A or B) = P(A) + P(B) - P(AB)P(A or B) = P(A) + P(B) (when events are mutually exclusive because P(AB) = 0)

- 7. Independent Events:
 - Two events are independent if: P(B\A) = P(B) or if P(A\B) = P(A)

 Multiplication Rule for two independent events = P(A & B) = P(AB) = P(A)× P(B)

- Multiplication Rule for three independent events = P(A and B and C) = P(ABC) = P(A) × P(B) × P(C)
- 8. Complement Rule (for an event S) = P(S) + P(S^C) = 1 (where S^C is the event not S)

9. Total Probability Rule: $P(A) = P(AS) + P(AS^{C}) = P(A | S) \times P(S) + P(A | S^{C}) \times P(S^{C})$ $P(A) = P(AS_{1}) + P(AS_{2}) + \dots + P(AS_{n}) = P(A | S_{1}) \times P(S_{1}) + P(A | S_{2}) \times P(S_{2}) \dots$ $P(A | S_{n}) \times P(S_{n})$

(where $S_1, S_2, ..., S_n$ are mutually exclusive and exhaustive scenarios)

- 10. Expected $R = E(w_iR_i) = w_iE(R_i)$
- 11. Cov (R_i R_j) = $\sum_{i=1}^{n} (p(R_i ER_i))(R_j ER_j)$ Cov (R_i R_j) = Cov (R_j R_i) Cov (R, R) = σ^2 (R)

12. Portfolio Var = $\sigma^2 (R_p) =$ $\sum_{i=1}^n \sum_{j=1}^n w_i w_j Cov(R_i R_j)$ $\sigma^2 (R_p) = w_1^2 \sigma^2 (R_1) + w_2^2 \sigma^2 (R_2) +$ $w_3^2 \sigma^2 (R_3) + 2w_1 w_2 Cov(R_1, R_2) +$ $2w_1 w_3 Cov(R_1, R_3) +$ $2w_2 w_3 Cov(R_2, R_3)$

- 13. Standard Deviation (S.D) = $\sqrt{w_1^2 R_i + w_2^2 R_2 + w_3^2 R_3}$
- 14. Correlation (b/w two random variables R_i, R_j) = $\rho(R_i R_j) = \frac{Cov(R_i R_j)}{\sigma R_i \times \sigma R_j}$
- 15. Bayes' Formula = P(Event\ New Information) = <u>P(New Information\Event)</u> × <u>P(New Information)</u> × P(Prior prob. of Event)
- 16. Multiplication Rule of Counting = n factorial = n! = n (n-1)(n-2)(n-3)...1.
- 17. Multinomial Formula (General formula for labeling problem) = $\frac{n!}{n_1!n_2!...n_k!}$
- 18. Combination Formula (Binomial Formula) = ${}^{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)!r!}$

where n = total no. of objects and r = no. of objects selected.

19. Permutation = ${}^{n}P_{r} = \frac{n!}{(n-r)!}$

Reading 9: Common Probability Distributions

1. Probability Function (for a binomial random variable) p(x) = p(X=x) = $\binom{n}{x}p_x(1-P)^{n-x} = = \frac{n!}{(n-x)!x!p^x(1-p)^{n-x}}$ (for x = 0,1,2...n)

- x = success out of n trials
- n-x = failures out of n trials
- p = probability of success
- 1-p = probability of failure
- n = no of trials.
- 2. Probability Density Function (pdf) = f(x)= $\begin{cases} \frac{1}{b-a} \text{ for } a \le x \le b = \\ 0 \end{cases}$ F(x) = $\frac{x-a}{b-a} \text{ for } a < x < b$
- 3. Normal Density Funct = $f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right)$ for $-\infty < x < +\infty$
- 4. Estimations by using Normal Distribution:
 - Approximately 50% of all obsv fall in the interval $\mu \pm \frac{2}{3}\sigma$
 - Approx 68% of all obvs fall in the interval $\mu \pm \sigma$
 - Approx 68% of all obvs fall in the interval $\mu \pm 2\sigma$
 - Approx 68% of all obvs fall in the interval $\mu \pm 3\sigma$
 - More precise intervals for 95% of the obvs are μ ± 1.96σ and for 99% of the observations are μ ± 2.58σ.
- Z-Score (how many S.Ds away from the mean the point x lies)
 z =

standard normal random variable = $\frac{X-\mu}{\sigma}$ (when X is normally distributed)

Formula Sheet

6. Roy's Safety-Frist Criterion = SF Ratio = $\frac{[E(R_P) - R_L]}{\sigma_P}$

7. Sharpe Ratio =
$$\frac{[E(R_P)-R_f]}{\sigma_P}$$

- Value at Risk = VAR = Minimum \$ loss expected over a specified period at a specified prob level.
- 9. Mean (μ_L) of a lognormal random variable = exp ($\mu + 0.50\sigma^2$)
- 10. Variance (σ_L^2) of a lognormal random variable = exp $(2\mu + \sigma^2) \times [exp (\sigma^2) - 1]$.
- 11. Log Normal Price = $S_T = S_0 exp(r_{0,T})$ Where, exp = e and $r_{0,t} = Continuously$ compounded return from 0 to T
- 12. Price relative = End price / Beg price = $S_{t+1}/S_t=1+R_{t, t+1}$

where, $R_{t, t+1} = holding period return on the stock$ from t to t + 1.

13. Continuously compounded return associated with a holding period from t to t + 1:

$$\begin{split} r_{t,\ t+l} &= ln(1 + holding\ period\ return)\ \textit{or} \\ r_{t,\ t+l} &= ln(price\ relative) = ln\ (S_{t+1} / \ S_t) = ln \\ (1 + R_{t,t+l}) \end{split}$$

14. Continuously compounded return associated with a holding period from 0 to T:

 $R_{0,T} = \ln (S_T / S_0) \text{ or } r_{0,T} = r_{T-1,T} + r_{T-2,T-1} + \dots + r_{0,1}$

Where, $r_{T-I, T} = One$ -period continuously compounded returns

15. When one-period continuously compounded returns (i.e. $r_{0,1}$) are IID random variables.

$$E(r_{0,T}) = E(r_{T-1,T}) + E(r_{T-2,T-1}) + \cdots + E(r_{0,1}) = \mu T And$$

$$Variance = \sigma^2(r_{0,T}) = \sigma^2 T$$

S.D. = σ (r_{0,T}) = $\sigma \sqrt{T}$

16. Annualized volatility = sample S.D. of one period continuously compounded returns $\times \sqrt{T}$

Reading 10: Sampling and Estimation

1. Var of the distribution of the sample mean $= \frac{\sigma^2}{n}$

2. S.D of the distribution of the sample mean

$$=\sqrt{\frac{\sigma^2}{n}}$$

- 3. Standard Error of the sample mean:
 - When the population S.D (σ) is known = $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
 - When the population S.D (σ) is not known = $s_{\overline{X}} = \frac{s}{\sqrt{n}}$ where s = sample S.D estimate of s = $\sqrt{sample \ variance} =$ $\sqrt{s^2} \ where \ s^2 = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2}{n-1}$
- 4. Finite Population Correction Factor = fpc = $\sqrt{\left[\frac{N-n}{N-1}\right]}$ where N= population
- New Adjusted Estimate of Standard Error
 = (Old estimated standard error × fpc)
- Construction of Confidence Interval (CI) = Point estimate ± (Reliability factor × Standard error)
 - CI for normally distributed population with <u>known</u> variance = $\bar{x} \pm z_{a/2} \frac{\sigma}{\sqrt{n}}$
 - CI for normally distributed population with <u>unknown</u> variance $= \bar{x} \pm z_{a/2} \frac{s}{\sqrt{n}}$ where S = sample S.D.
- 7. Student's t distribution $\mu = \overline{X} \pm t_{a/2} \frac{s}{\sqrt{n}}$

8. Z-ratio =
$$Z = \frac{\overline{x - \mu}}{\sigma / \sqrt{n}}$$

9. t-ratio = $t = \frac{\overline{x - \mu}}{s / \sqrt{n}}$

Reading 11: Hypothesis Testing

1. Test Statistic = <u>Sample Statistic Hypothesized Value of pop parameter</u> <u>standard error of sample statistic *</u>

> *when Pop S.D is unknown, the standard error of sample statistic is give by $S_{\overline{X}} = \frac{S}{\sqrt{n}}$

*when Pop S.D is unknown, the standard error of sample statistic is give by $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

- 2. Power of Test = 1-Prob of Type II Error
- 3. $z = \frac{\bar{X} \mu_0}{\frac{\sigma}{\sqrt{n}}}$ (when sample size is large or small but pop S.D is known)

4.
$$z = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$$
 (when sample size is large but
pop S.D is unknown where s is sample
S.D)

5. $t_{n-1} = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}}$ (when sample size is large or small and pop S.D is unknown and pop sampled is normally or approximately normally distributed)

6. Test Statistic for a test of diff b/w two pop means (normally distributed, pop var unknown but assumed equal)

$$t = \frac{(\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)}{\left(\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}\right)^{1/2}} \text{ where } S_p^2 = \text{pooled}$$

estimator of common variance = $\frac{(n_1-1)S_1^2 + (n_2-1)S_2^2}{n_1+n_2-2}$ where $df = n_1 + n_2 - 2$.

 Test Statistic for a test of diff b/wn two pop means (normally distributed, unequal and unknown pop var unknown)

$$t = \frac{(\overline{x_1} - \overline{x_2}) - (\mu_1 - \mu_2)}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^{1/2}}$$
 In this df calculated as
$$df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2}}$$

8. Test Statistic for a test of mean differences (normally distributed populations, unknown population variances)

•
$$t = \frac{\bar{d} - \mu_{d0}}{S\bar{d}}$$

Formula Sheet

• sample mean difference = \overline{d} = $\frac{1}{n} \sum_{i=1}^{n} d_i$

- sample variance = $S_d^2 = \frac{\sum_{i=0}^n (d_1 \bar{d})^2}{n-1}$
- sample S.D = $\sqrt{S_d^2}$
- sample error of the sample mean difference = $s \overline{d} = \frac{s_d}{\sqrt{n}}$
- 8. Chi Square Test Statistic (for test concerning the value of a normal population variance) $X^2 = \frac{(n-1)S^2}{\sigma_0^2}$ where (n-1) = df and $S^2 = sample \ variance = \frac{\sum_{i=0}^{n} (X_i \bar{X})^2}{n-1}$
- 9. Chi Square Confidence Interval for variance

Lower limit = L = $\frac{(n-1)S^2}{X_{a/2}^2}$ and Upper limit = U = $=\frac{(n-1)S^2}{X_{1-a/2}^2}$

- 10. F-test (test concerning differences between variances of two normally distributed populations) $F = \frac{S_1^2}{S_2^2}$
 - $S_1^2 = 1$ st sample var with n_1 obs $S_1^2 = 2$ nd sample var with n_2 obs $df_1 = n_1 - 1$ numerator df $df_2 = n_2 - 1$ denominator df

11. Relation between Chi Square and Fdistribution = $F = \frac{X_1^2/m}{X_2^2/m}$ where:

- X_1^2 is one chi square random variable with one m degrees of freedom
- X_2^2 is another chi square random variable with one n degrees of freedom
- 12. Spearman Rank Correlation = r_s = $1 - \frac{6\sum_{i=1}^{n} d_1^2}{n(n^2 - 1)}$
 - For small samples rejection points for the test based on r_s are found using table.
 - For large sample size (e.g. n>30) t-test can be used to test the hypothesis i.e. $t = \frac{(n-2)^{1/2} r_s}{(1-r_s^2)^{1/2}}$

Reading 12: Technical Analysis

- 1. Relative Strength Analysis = <u>Price of asset</u> <u>Price of the Benchmark Asset</u>
- 2. Price Target for the
 - Head and Shoulders = Neckline (Head Neckline)
 - Inverse Head and Shoulders = Neckline + (Neckline– Head)
- 3. For the Double Tops Pattern:
 - Height = Highest high Lowest Low

- Price target = Lowest Low Height of the pattern
- 4. For the Double Tops Pattern:
 - Height = Highest high Lowest Low
 - Price target = Highest High + Height of the pattern
- Height of a Triangle = Price at the start of (downward slopping trend line –upward sloping trend line)
- 6. Flags and Pennants Pattern
 - Flag Price Target = Price level at which [flag ends – (trend starts –flag starts to form)]
 - Pennant Price Target = Price level at which [pennant ends – (trend starts – pennant starts to form)]
- 7. Simple Moving Average = $\frac{P_1 + P_2 + P_3 \dots + P_n}{N}$
- 8. Momentum Oscillator (or Rate of Change Oscillator ROC):
 - ROC = $\frac{Today's \Delta \Delta n \text{ periods ago}}{\Delta n \text{ periods ago}} \times 100$
 - Momentum Oscillator Value M = (V-V_x) × 100

(where V = most recent closing price and $V_x = closing$ price x days ago)

• Alternate Method to calculate M = $\frac{V}{V_{ee}} \times 100$

- 9. Relative Strength Index = RSI = 100 $\frac{100}{1+RS}$ where RS = $\frac{\Sigma(Up \ changes)}{\Sigma(|Down \ changes|)}$
- 10. Stochastic Oscillator (composed of two lines %K and %D):
 - % $K = 100 \left(\frac{C-L14}{H14-L14}\right)$ where: C = latest closing price, L14 = lowest price in last 14 days, H14 is highest price in last 14 days
 - %*D* = Average of the last three %*K* values calculated daily.
- 11. Put/Call Ratio (Type of Sentiment Indicators) = $\frac{Volume \ of \ Put \ Options \ Traded}{Volume \ of \ Call \ Options \ Traded}$
- 12. Short Interest Ratio (Type of Sentiment Indicators) = $\frac{Short Interest}{Average Daily Trading Volume}$
- 13. Arms Index TRIN i.e. Trading Index (Type of Flow of funds Indicator) =
 Arm Index or TRIN =
 <u>No.of Advan Issues +No.of Declin Issues</u>
 Volume of Advan Issues +Volume of Declin Issues

Reading 13: Demand & Supply Analysis: Introduction

1. Slope of the demand curve = $\frac{\Delta \text{ in Price}}{\Delta \text{ in Quantity Demanded}}$

- 2. Slope of the supply curve = $\frac{\Delta \text{ in Price}}{\Delta \text{ in Quantity Supplied}}$
- Consumer Surplus = Value that a consumer places on units consumed Price paid to buy those units
 - Area (for calculating Consumer Surplus) = ½ (Base × Height) = ½ (Q₀ × P₀)
- Producer Surplus = Total revenue received from selling a given amount of a good – Total variable cost of producing that amount
 - Total revenue = Total quantity sold × Price per unit
 - Area (for calculating Producer Surplus) = ½ (Base × Height) = ½ {(Q₀) × (P₀ – intercept point on yaxis**)}

**where supply curve intersects y-axis

- 5. Total Surplus = Consumer surplus + Producer surplus
- 6. Total Surplus = Total value Total variable cost
- 7. Society Welfare = Consumer surplus + Producer surplus

8. Price Elasticity of Demand = $\frac{\% \Delta \text{ in Quantity Demanded}}{\% \Delta \text{ in Price}}$ $\frac{\% \Delta Q}{\% \Delta P} = \frac{\frac{Q_2 - Q_1}{\frac{1}{2}(Q_1 + Q_2)}}{P_2 - P_1}$

 $\frac{1}{2}(P_1 + P_2)$

- 9. Income Elasticity of Demand = $\frac{\frac{\% \Delta \text{ in Quantity Demanded}}{\% \Delta \text{ in Income}} =$ $\frac{\frac{\% \Delta Q}{\% \Delta I} = \frac{\frac{Q_2 - Q_1}{\frac{1}{2}(Q_1 + Q_2)}}{\frac{I_2 - I_1}{\frac{1}{2}(I_1 + I_2)}}$

Reading 14: Demand & Supply Analysis: Consumer Demand

- 1. Marginal Utility = $\frac{\Delta \text{ in Total Utility}}{\Delta \text{ in Quantity Consumed}}$
- 2. Equation of Budget Constraint Line = $(P_X \times Q_X) + (P_Y \times Q_Y)$
- 3. Slope of Budget Constraint Line = $\frac{\Delta \text{ in } Q_Y}{\Delta \text{ in } Q_X} = \frac{P_X}{P_Y}$