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2. MULTIPLE LINEAR REGRESSION 

 

   

Multiple linear regression is a method used to model the 

linear relationship between a dependent variable and 

more than one independent (explanatory or regressors) 

variables. A multiple linear regression model has the 

following general form: 

 

 
 

where, 

Yi = ith observation of dependent variable Y 

Xki = ith observation of kth independent variable X 

β0 = intercept term 

βk = slope coefficient of kth independent variable  

εi = error term of ith observation 

n = number of observations 

k = total number of independent variables 

 

• A slope coefficient, βj is known as partial 

regression coefficients or partial slope coefficients. 

It measures how much the dependent variable, Y, 

changes when the independent variable, Xj, 

changes by one unit, holding all other 

independent variables constant. 

• The intercept term (β0) is the value of the 

dependent variable when the independent 

variables are all equal to zero. 

• A regression equation has k slope coefficients and 

k + 1 regression coefficients.  

 

 

 
 

 

Simple vs. Multiple Regression 

Simple Regression Multiple Regression 

1. One dependent 

variable Y predicted 

from one 

independent variable 

X 

2. One regression 

coefficient 

3. r2: proportion of 

variation in 

dependent variable Y 

predictable from X 

 

1. One dependent 

variable Y predicted 

from a set of 

independent variables 

(X1, X2 …. Xk) 

2. One regression 

coefficient for each 

independent variable 

3. R2: proportion of 

variation in dependent 

variable Y predictable 

by set of independent 

variables (X’s) 

 

2.1 
Assumptions of the Multiple Linear Regression 

Model 

 

The Multiple linear regression model is based on following 

six assumptions. When these assumptions hold, the 

regression estimators are unbiased, efficient and 

consistent.  

 

NOTE: 

 

• Unbiased means that the expected value of the 

estimator is equal to the true value of the 

parameter.  

• Efficient means that the estimator has a smaller 

variance than any other estimator.  

• Consistent means that the biasness and variance 

of the estimator approach zero as the sample size 

increases. 

 

Assumptions: 

 

1. The relationship between the dependent 

variable, Y, and the independent variables, X1, X2, 

. . . ,Xk, is linear. 

2. The independent variables (X1, X2, . . . ,Xk) are not 

random.  Also, no exact linear relation exists 

between two or more of the independent 

variables. 

3. The expected value of the error term, conditional 

on the independent variables, is 0:   E (ε| X1, X2, . . 

. , Xk) = 0. 

4. The variance of the error term is constant for all 

observations i.e. errors are Homoskedastic. 

5. The error term is uncorrelated across observations 

(i.e. no serial correlation).  

6. The error term is normally distributed. 

 

NOTE: 

 

• Linear regression can’t be estimated when an 

exact linear relationship exists between two or 

more independent variables. But when two or 

more independent variables are highly correlated, 

although there is no exact relationship, it leads to 

multicollinearity problem. (Discussed later in 

detail).  

• Even if independent variable is random but 

uncorrelated with the error term, regression results 

are reliable.  

 

 

 
 

  

Practice: Example 2 & 3 

Volume 1, Reading 10. 

Practice: Example 1 

Volume 1, Reading 10. 
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2.2 
Predicting the Dependent Variable in a Multiple 

Regression Model 

 

The process of calculating the predicted value of 

dependent variable is the same as we did in Reading 11.  

 

Prediction equation 
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where, 

���: Estimated or predicted value of Y 

b0: Estimated intercept 

b1, b2,… & bk: Estimated slope coefficients 

 

Assumptions of the regression model must hold in order 

to have reliable prediction results. 

 

 

 
 

 

Sources of uncertainity when using regression model & 

estimated parameters: 

 

1. Uncertainity in error term. 

2. Uncertainity in the estimated parameters of the 

model. 

 

2.3 
Testing Whether All Population Regression 

Coefficients Equal Zero 

 

To test the significance of the regression as a whole, we 

test the null hypothesis that all the slope coefficients in a 

regression are simultaneously equal to 0. 

 

H0: β1 = β2 = … = βk = 0 (no linear relationship) 

H1: at least one βi ≠ 0   (at least one independent 

variable affects Y) 

 

In multiple regression, the F-statistic is used to test 

whether at least one independent variable, in a set of 

independent variables, explains a significant portion of 

variation of the dependent variable. The F statistic is 

calculated as the ratio of the mean regression sum to 

squares of the mean squared error, 

 


��

�� �
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df numerator = k  

df denominator = n – k – 1 

 

Note: F-test is always a one-tailed test.  

Decision Rule: Reject H0 if F>F-critical.  

 
 

NOTE: 

When independent variable in a regression model does 

not explain any variation in the dependent variable, 

then the predicted value of y is equal to mean of y. Thus, 

RSS = 0 and F-statistic is 0.  

 

• Larger R2 produces larger values of F.  

• Larger sample sizes also tend to produce larger 

values of F. 

• The lower the p-value, the stronger the evidence 

against that null hypothesis.  

 

Example:  

k = 2 

n = 1,819 

df = 1,819 – 2 – 1 = 1,816 

SSE = 2,236.2820 

RSS = 2,681.6482 

α = 5% 

F-statistic = 
���
���= (2,681.6482/2) / (2,236.2820/1,816) = 

1,088.8325 

 

F-critical with numerator df = 2 and denominator df = 

1,816 is 3.00.  

 

Since F-statistic > F-critical, Reject H0 that coefficients of 

both independent variables equal 0. 

 

2.4 Adjusted R2 

 

In multiple linear regression model, R2 is less appropriate 

as a measure to test the “goodness of fit” of the model 

because R2 always increases when the number of 

independent variables increases. It is important to keep 

in mind that a high R2does not imply causation. 

 

The adjusted R2 is used to deal with this artificial increase 

in accuracy. Adjusted R2 does not automatically 

increase when another variable is added to a 

regression; it is adjusted for degrees of freedom. The 

adjusted R2 is given by 

��
 � 1 � � � � 1� � � � 1� �1 � �

� 

where, 

n = sample size, 

k = number of independent variables 

 

• When k ≥ 1, then R2 is strictly > Adjusted R2. 

• Adjusted R2 decreases if the new variable added 

does not have any significant explanatory power.  

Practice: Example 4 

Volume 1, Reading 10. 
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• Adjusted R2 can be negative as well but R2 is 

always positive.  

• Adjusted R2 is always ≤ R2. 

 

NOTE: 

When Adjusted R2 is used to compare regression models, 

both the dependent variable definition and sample size 

must be same for each model.  

 

3. USING DUMMY VARIABLES IN REGRESSIONS 

 

 

Dummy variable is a qualitative variable that takes on a 

value of 1 if a particular condition is true and 0 if that 

condition is false. It is used to account for qualitative 

variables such as male or female, month of the year 

effects, etc. 

 

Suppose we want to test whether total returns of one 

small-stock index, the Russell 2000 Index, differ by 

months. We can use dummy variables to estimate the 

following regression, 

 

Returnst = b0 + b1jant + b2Febt +…+ b11Novt + εt 

 

• If we want to distinguish among n categories, we 

need n -1 dummy variables e.g. in above 

regression model we will need 12 – 1 = 11 dummy 

variables. If we take 12 dummy variables, 

Assumption 2 is violated.  

• b0 represents average return for stocks in 

December. 

• b1, b2, b3,..,b11 represent difference between 

returns in that month and returns for December i.e.  

o Average stock returns in Dec = b0 

o Average stock returns in Jan = b0 + b1 

o Average stock returns in Feb = b0 + b2 

o Average stock returns in Nov = b0 + b11  

 

As with all multiple regression results, the F-statistic for the 

set of coefficients and the R2 are evaluated to 

determine if the months, individually or collectively, 

contribute to the explanation of monthly return. We can 

also test whether the average stock return in each of the 

months is equal to the stock return in Dec (the omitted 

month) by testing the individual slope coefficient using 

the following null hypotheses: 

 

H0: b1 = 0 (i.e. stock return in Dec = stock return in Jan) 

H0: b2 = 0 (i.e. stock return in Dec = stock return in Feb) 

and so on…. 

 

 

 
 

 

 

4. VIOLATIONS OF REGRESSION ASSUMPTIONS 

 

 

4.1 Heteroskedasticity 

 

Heteroskedasticity occurs when the variance of the 

errors differs across observations i.e. variances are not 

constant.  

 

Types of Heteroskedasticity: 

1. Unconditional Heteroskedasticity: It occurs when 

Heteroskedasticity of the error variance does not 

systematically increase or decrease with changes in the 

value of the independent variable. Although it violates 

Assumption 4, but it creates no serious problems with 

regression. 

 

2. Conditional Heteroskedasticity: Conditional 

heteroskedasticity exists when Heteroskedasticity of the 

error variance increases as the value of independent 

variable increases. It is more problematic than 

unconditional hetroscadasticity. 

 

4.1.1) Consequences of (Conditional) Heteroskedasticity: 

 

• It does not affect consistency but it can lead to 

wrong inferences. 

• Coefficient estimates are not affected. 

• It causes the F-test for the overall significance to 

be unreliable.  

• It introduces biasness into estimators of the 

standard error of regression coefficients; thus, t-

tests for the significance of individual regression 

coefficients are unreliable.  

 

When Heteroskedasticity results in underestimated 

standard errors, t-statistics are inflated and probability of 

Type-I error increases. The opposite will be true if 

standard errors are overestimated. 

 

4.1.2) Testing for Heteroskedasticity: 

1. Plotting residuals: A scatter plot of the residuals versus 

one or more of the independent variables can 

describe patterns among observations (as shown 

below). 

 

 

 

 

Practice: Example 5 

Volume 1, Reading 10. 
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Regressions with Homoskedasticity 

 
 

Regressions with Heteroskedasticity 

 
 

2. Using Breusch–Pagan test: The Breusch–Pagan test 

involves regressing the squared residuals from the 

estimated regression equation on the independent 

variables in the regression.  

 

H0 = No conditional Heteroskedasticity exists 

HA = Conditional Heteroskedasticity exists 

 

Test statistic = n × R2
residuals 

 

where, 

R2
residuals = R2 from a second regression of the squared 

residuals from the first regression on the 

independent variables 

n = number of observations 

 

• Critical value is calculated from χ2 distribution 

table with df = k. 

• It is a one-tailed test since we are concerned only 

with large values of the test statistic. 

 

Decision Rule: When test statistic > critical value, Reject 

H0 and conclude that error terms in the regression model 

are conditionally Heteroskedastic.  

 

• If no conditional heteroskedasticity exists, the 

independent variables will not explain much of the 

variation in the squared residuals.  

• If conditional heteroskedasticity is present in the 

original regression, the independent variables will 

explain a significant portion of the variation in the 

squared residuals.  

 

 

 

4.1.3) Correcting for Heteroskedasticity: 

Two different methods to correct the effects of 

conditional heteroskedasticity are: 

 

1. Computing robust standard errors (heteroskedasticity-

consistent standard errors or white-corrected 

standard errors), corrects the standard errors of the 

linear regression model’s estimated coefficients to 

deal with conditional heteroskedasticity. 

 

2. Generalized least squares (GLS) method is used to 

modify the original equation in order to eliminate the 

heteroskedasticity. 

 

4.2 Serial Correlation 

 

When regression errors are correlated across 

observations, then errors are serially correlated (or auto 

correlated). Serial correlation most typically arises in 

time-series regressions. 

 

Types of Serial Correlation:  

1. Positive serial correlation is a serial correlation in which 

a positive (negative) error for one observation 

increases the probability of a positive (negative) error 

for another observation. 

 

2. Negative serial correlation is a serial correlation in 

which a positive (negative) error for one observation 

increases the probability of a negative (positive) error 

for another observation. 

 

4.2.1) Consequences of Serial Correlation: 

 

• The principal problem caused by serial correlation 

in a linear regression is an incorrect estimate of the 

regression coefficient standard errors. 

• When one of the independent variables is a 

lagged value of the dependent variable, then 

serial correlation causes all the parameter 

estimates to be inconsistent and invalid. Otherwise, 

serial correlation does not affect the consistency 

of the estimated regression coefficients.  

• Serial correlation leads to wrong inferences. 

• In case of positive (negative) serial correlation: 

Standard errors are underestimated 

(overestimated) → T-statistics (& F-statistics) are 

inflated (understated) →Type-I (Type-II) error 

increases. 

 

4.2.2) Testing for Serial Correlation: 

1. Plotting residuals i.e. a scatter plot of residuals versus 

time (as shown below). 

 

 

Practice: Example 8 

Volume 1, Reading 10. 
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2. Using Durbin-Watson Test:  The Durbin Watson 

statistic is used to test for serial correlation 

 

� � ∑ �"$̂ � "$̂%��
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where, 

"̂t is the regression residual for period t. 

The DW statistic tests the null hypothesis of no 

autocorrelation against the alternative hypothesis of 

positive (or negative) autocorrelation. In case of large 

sample size, Durbin-Watson statistic (d) is approximately 

equal to  

 

d ≈ 2 (1 – r) 

where, 

r = sample correlation b/w regression residuals from one 

period and from the previous period. 

 

The above equation implies that 

 

• d = 2, if no autocorrelation ( r = 0 ) 

• d = 0, if autocorrelation is +1.0 

• d = 4, if autocorrelation is –1.0 

 

Decision Rule: 

 

A. For positive autocorrelation, the decision rule is: 

H0; no positive auto correlation 

Ha; positive auto correlation 

 

• If d <dl → Reject H0 

• If d > du→ Do not reject H0 

• If dl ≤ d ≤ du→ Inconclusive  

 

B. For negative autocorrelation, the decision rule is: 

H0; no negative auto correlation 

Ha; negative auto correlation 

 

• If d > 4 - dl → Reject H0 

• If d < 4 - du→ Do not reject H0 

• If 4 – du  ≤ d ≤  4 - dl → Inconclusive  

 

 
 

4.2.3) Correcting for Serial Correlation: 

The two different methods to correct effects of serial 

correlation are: 

 

1. Adjust the coefficient standard errors for the linear 

regression parameter estimates to account for 

the serial correlation e.g. using Hansen’s method. 

Hansen’s method also simultaneously corrects for 

conditional heteroskedasticity. (Mostly this 

method is recommended). 

2. Modify the regression equation itself to eliminate 

serial correlation. 

 

4.3 Multicollinearity 

 

Multicollinearity occurs when two or more independent 

variables (or combinations of independent variables) 

are highly (but not perfectly) correlated with each other. 

 

 

4.3.1) Consequences of Multicollinearity: 

 

• A high degree of multicollinearity can make it 

difficult to detect significant relationships.  

• Multicollinearity does not affect the consistency of 

the estimates of the regression coefficients but 

estimates become extremely imprecise and 

unreliable.  

• It does not affect F-statistic. 

• The multicollinearity problem does not result in 

biased coefficient estimates; however, standard 

errors of regression coefficients can increase, 

causing insignificant t-tests and wide confidence 

intervals i.e. Type-II error increases. 

 

4.3.2) Detecting Multicollinearity 

 

• High pairwise correlations among independent 

variables do not necessarily indicate presence of 

multicollinearity while a low pairwise correlation 

among independent variables is not an evidence 

that multicollinearity does not exist. Correlation 

between independent variables is useful as an 

indicator of multicollinearity only in case of two 

independent variables.  

• The classic symptom of multicollinearity is a high R2 

(and significant F-statistic) even though the t-

statistics on the estimated slope coefficients are 

not significant. 

 

4.3.3) Correcting for Multicollinearity 

The problem of multicollinearity can be corrected by 

excluding one or more of the regression variables. 
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4.4 Summarizing the Issues 

 

Problem 
How to 

detect 

Conseque

nces 

Possible 

Corrections 

(Conditional) 

Heteroskedastic

ity 

i.e. Errors are 

correlated with 

earlier X 

Plot 

residuals 

or use 

Breusch–

Pagan 

test 

Wrong 

inferences

; incorrect 

standard 

errors 

Use robust 

standard 

errors or 

GLS 

Serial 

correlation i.e. 

Errors are 

correlated with 

Durbin-

Watson 

Test 

Wrong 

inferences

; incorrect 

standard 

Use robust 

standard 

errors 

(Hansen’s 

Problem 
How to 

detect 

Conseque

nces 

Possible 

Corrections 

earlier errors errors method) or 

modifying 

equation 

Multicollinearity 

i.e. 

independent 

variables are 

strongly 

correlated with 

each other 

High R2 

and 

significan

t F-

statistic 

but low t-

statistic 

Wrong 

inferences

; 

Omit 

variable 

 

 

5. MODEL SPECIFICATION AND ERRORS IN SPECIFICATION 

 

 

Model specification refers to the set of variables 

included in the regression and the regression equation’s 

functional form. Incorrect model specification can result 

in biased & inconsistent parameter estimates and 

violations of other assumptions. 

 

5.1 Principles of Model Specification 

 

1. The model should be based on logical economic 

reasoning.  

2. The functional form chosen for the variables in the 

regression should be compatible with the nature 

of the variables.  

3. The model should be parsimonious (i.e. 

economical both in terms of time & cost).  

4. The model should be examined for any violation 

of regression assumptions before being 

accepted.  

5. The model should be tested for its validity & 

usefulness out of sample before being accepted. 

 

Types of misspecifications: 

1. Misspecified Functional Form: 

a) Omitted variables bias: One or more important 

variables are omitted from regression. 

 

• When relevant variables are excluded, result can 

be biased & inconsistent parameter estimates 

(unless the omitted variable is uncorrelated with 

the included ones). 

• When irrelevant variables are included, standard 

errors are overestimated. 

b) One or more of the regression variables may need to 

be transformed (for example, by taking the natural 

logarithm of the variable) before estimating the 

regression. 

 

c) The regression model pools data from different 

samples that should not be pooled. 

 

2. Independent variables are correlated with the error 

term. This is a violation of Regression Assumption 3, 

that the error term has a mean of 0, and causes the 

estimated regression coefficients to be biased and 

inconsistent. Three common problems that cause this 

type of time-series misspecification are:  

 

a) Including lagged dependent variables as 

independent variables in regressions (with serially 

correlated errors) e.g. Yt = b0 + b1Xt+ b2 Yt-1 + εt 

 

b) Including a function of dependent variables as an 

independent variable i.e. forecasting “past” instead 

of future e.g. EPSt = b0 + b1BVt + εt; we should rather 

use Yt = b0 + b1 BVt-1 + εt 

 

c) Independent variables that are measured with error 

i.e. due to use of wrong proxy variable. When this 

problem exists in a single independent variable 

regression, the estimated slope coefficient on that 

variable will be biased toward 0. 

 

3. Other types of Time-series Misspecification e.g. 

nonstationarity problem, which results in non-constant 

mean and variance over time. (Discussed in detail in 

Reading 13) 
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6. MODEL WITH QUALITATIVE DEPENDENT VARIABLES 

 

 

Qualitative dependent variables are dummy variables 

used as dependent variables instead of independent 

variables. 

 

• The probit model is based on the normal 

distribution and estimates the probability that Y = 1 

(a condition is fulfilled) given the value of the 

independent variable X. 

• The logit model is identical to probit model, 

except that it is based on the logistic distribution 

rather than the normal distribution. 

• Discriminant analysis is based on a linear function, 

similar to a regression equation, which is used to 

create an overall score. Based on the score, an 

observation can be classified into categories such 

as bankrupt or not bankrupt. 

 

Economic meaning of the results of multiple regression 

analysis and criticism of a regression model and its 

results: 

 

1. The validity of a regression model is based on its 

assumptions. When these assumptions do not 

hold, regression estimates and results are 

inaccurate and invalid. 

2. Regression does not prove causality between 

variables; it only discovers correlations between 

variables. 

3. Regression Analysis focuses on its use for statistical 

inference only. A relationship may be statistically 

significant but has no economic significance e.g. 

a regression model may identify a statistically 

significant abnormal return after the dividend 

announcement, but these returns may prove 

unprofitable when transactions costs are taken 

into account. 

 

  

Practice: End of Chapter Practice 

Problems for Reading 10 &FinQuiz 

Item-set ID# 11514, 15830 & 16534. 


