

FinQuiz Formula Sheet CFA Program Level III

Learning Module: 1 Capital Market Expectations, Part 1: Framework and Macro Considerations

1. $i^* = r_{neutral} + \pi_e + 0.5 \times (\widehat{Y}_e - \widehat{Y}_{trend}) + 0.5 \times (\pi_e - \pi_{target})$

where,

*i**= target nominal policy rate

r_{neutral} = real policy rate that would be targeted
if GDP growth were on trend & inflation on
target

 $\pi_e,\,\pi_{target}$ = respectively the expected and target inflation rates

 $\widehat{Y}_{e}, \ \widehat{Y}_{trend}\text{=} \ \ \text{respectively the expected and} \\ \text{trend real GDP growth rates}$

By readjusting the above equation:

Real inflation adjusted target rate =

$$\begin{split} i^* - \pi_e = r_{neutral} + 0.5 \times (\widehat{Y}_e - \widehat{Y}_{trend}) + 0.5 \times \\ (\pi_e - \pi_{target}) \end{split}$$

VOLUME 1

- Net exports = Net Private Savings + Government Surplus (X-M) = (S-I) + (T-G)
- 3. Government Surplus = Taxes Government spending

Learning Module: 2 Capital Market Expectations, Part 2: Forecasting Asset Class Returns

- 1. $E(R_e) \approx \frac{D}{P} + (\% \Delta E \% \Delta S) + \Delta P/E$ Where,
 - \circ E (R_e) = Expected rate of return on equity
 - \circ D/P = Expected dividend yield
 - $\circ \%\Delta S$ = Expected % change in number of shares outstanding
- 2. Under Basic CAPM model:

$$\circ \quad RP_i = \beta_{i,M} RP_M$$

$$\circ \quad \beta_{i,M} = Cov(R_i, R_M) / \sigma_M^2 = \rho_{i,M_i} \left(\frac{\sigma_i}{\sigma_M} \right)$$

 $RP_{i} = [ER_{i} - R_{F}] \text{ risk premium on } i\text{th}$ asset $RP_{M} = [ER_{M} - R_{F}] \text{ risk premium on}$ market portfolio $\beta_{i,M} = \text{ith asset sensitivity to market}$ portfolio = $\frac{Cov(R_{i},R_{M})}{\sigma_{M}^{2}} = \rho_{i,M} \left(\frac{\sigma_{i}}{\sigma_{M}}\right)$

 σ is standard deviation and ρ is correlation

Expected Return using Singer-Terhaar Model

Model's 1st component (full integration assumption):

3.
$$RP_i^G = \beta_{i,GM} RP_{GM} = \rho_{i,GM} \sigma_i \left(\frac{RP_{GM}}{\sigma_{GM}}\right)$$

Model's 2nd component (completely segmented market assumption):

4.
$$RP_i^S = 1 \times RP_{GM} = 1 \times \sigma_i \left(\frac{RP_i^S}{\sigma_i}\right)$$

5.
$$RP_i = \varphi RP_i^G + (1 - \varphi)RP_i^S$$

 Cap rate = Current year's NOI Property value
 net operating Income