Rates and Returns

3. RATES OF RETURN

Two types of financial asset returns are:

1) periodic income (cash dividends or interest payments)
2) capital gain or loss (changes in the price of a financial asset).

Measures the return over a specific period.

Calculated as:
$R=\frac{\left(P_{1}+P_{0}\right)+I_{1}}{P_{0}}-1$

For periods longer than
a year, HPR is
compounded annually.

Sum of all returns divided by the total observations.

Advantages: Easy to compute, commonly used, and facilitates standard deviation calculations to assess variability.

Compound growth rate over multiple periods.

Suitable for a "buy-andhold" strategy.

Calculated as:
$\bar{R}_{G i}=\sqrt{T} \begin{aligned} & \left(1+R_{i 1}\right) \times\left(1+R_{i T}\right)\end{aligned}-1$
Advantage: Provides a more accurate measure of long-term investment returns.

Additional Means for Handling Data Variability

Trimmed Mean:

Excludes a small \% of the extreme values from both ends of a dataset before calculating the mean.

Winsorized Mean:

Assigns specified values to the extreme ends of a dataset before averaging, mitigating the impact of outliers.

4. MONEY-WEIGHTED AND
 TIME-WEIGHTED RETURN

Metric	Money-Weighted Return (MWR)	Time-Weighted Return (TWR)
Definition	Compound growth rate of all funds over the entire evaluation period	Compound rate of growth for one unit of initially invested money over a specified evaluation period
Formula	$\sum_{t=0}^{T} \frac{C F_{t}}{(1+I R R)^{t}}=0$	Time weighted return $=r_{t w r}=[(1+r t, 1) \times$ $(1+r t, 2) \times \ldots \times(1+r t, n)]^{1 / N}-1$
Representation	Internal Rate of Return (IRR)	Actual rate of return earned by the portfolio manager
Consideration of Cash Flows	Takes into account the timing and size of cash flows	Does not consider the timing and size of cash flows
Comparative Analysis	Can be used to compare different investments with varying cash flow patterns	Cannot be used to compare different investments
Common Usage	L	More commonly used to evaluate portfolio manager performance
Sensitivity to Cash Flows	Sensitive to timing and size of cash flows	Not sensitive to timing and size of cash flows
Comparative Capability	Can compare performance of different investments	Cannot compare performance of different investments
Limitations	Cannot compare returns between different individuals or investment opportunities	Requires determining account value for each cash flow, potentially incurring costs

5. ANNUALIZED RETURN

- Return that would have been earned if a given investment was compounded over a one-year period.
$r_{\text {annual }}=\left(1+r_{\text {period }}\right)^{c}-1$
- Converts short-term returns to an annual basis,
- Standardizes return comparisons across time and investment types.
- Compounded differently based on the period (monthly, quarterly, weekly, daily)
- Limitation: Assumes constant reinvestment at similar rates.
- Returns that would have been earned if an investment was compounded continuously, rather than at discrete intervals.
- For Single Period:
$r_{t, t+1}=\ln (1+$ holding period return) or
$r_{t, t+1}=\ln ($ price relative $)=\ln \left(S_{t+1} / S_{t}\right)$
- For Multiple Period:
$\mathrm{R}_{\mathrm{O}, \mathrm{T}}=\ln \left(\mathrm{S}_{\mathrm{T}} / \mathrm{S}_{0}\right)$
- Continuously compounded returns are always lower than associated holding period returns
- Offers a refined view of returns, especially valuable in financial modeling and analysis.

