

Formula Sheet

FinQuiz Formula Sheet CFA Program Level I

QUANTITATIVE METHODS

Learning Module 1:
Rates and Returns

1. Interest Rate r

r = Real risk-free rate + Inflation premium + Default risk premium + Liquidity premium + Maturity premium

Nominal risk-free rate = Real risk-free rate + Inflation premium

2. Holding Period Return (HPR)

$$R = \frac{(P_1 + P_0) + I_1}{P_0} - 1$$

where

 P_0 =price at the beginning of period P_1 = price at the end of period I =income

3. Arithmetic mean (AM)

$$\begin{split} \bar{R}_i &= \frac{R_{i1} + R_{i2} + \dots + R_{i,T-1} + R_{iT}}{T} \\ &= \frac{1}{T} \sum_{t=1}^{T} R_{it} \end{split}$$

4. Geometric Mean Return

$$\overline{R}_{Gi} = \sqrt[T]{(1 + R_{i1}) ... \times (1 + R_{iT})} - 1$$

where.

 R_{it} = return in period t T = total number of periods

5. Harmonic Mean

$$\overline{X}_{H} = n / \sum_{i=1}^{n} (\frac{1}{X_{i}})$$

with $X_i > 0$ for i = 1, 2, ..., n.

6. Money-weighted rate of return (MWR)

$$IRR = \sum_{t=0}^{T} \frac{CF_t}{(1 + IRR)^t} = 0$$

where.

IRR = internal rate of return T = number of periods CF_t = cash flow at time t

7. Time-weighted Returns (TWR)

$$r_{twr} = [(1 + rt, 1) \times (1 + rt, 2) \times ... \times (1 + rt, n)]^{1/N} - 1$$

8. Non-annual Compounding PV (for more than one Compounding

PV (for more than one Compounding per year)

PV= FV_N
$$\left(1 + \frac{r_s}{m}\right)^{-m \times N}$$

where $r_s = stated\ ann\ i - rate$

9. Annualized Return

$$r_{annual} = (1 + r_{period})^c - 1$$

where,

c = number of periods in a year

$$r_{weekly} = (1 + r_{daily})^5 - 1;$$

$$r_{weekly} = (1 + r_{annualy})^{1/32} - 1$$

10. Continuously Compounded Return CCRCCR associated with a HPR (t to t + 1)

 $r_{t, t+1}$ = In(1 + holding period return) or $r_{t, t+1}$ = In(price relative) = In (P_{t+1}/P_t) = In (1 + $P_{t,t+1}$)

CCR associated with a HPR (0 to T)

$$R_{0,T} = In (P_T/P_0) \text{ or }$$

 $r_{0,T} = r_{T-1,T} + r_{T-2,T-1} + \dots + r_{0,1}$

11. Gross Return

Gross return = Return - trading expenses-Other expense directly related to the generation of returns

12. Net Return

Net Return = Gross Return - all managerial and administrative expenses

13. After-Tax Nominal Return

After-tax nominal return = Total return – any allowance for taxes on dividends, interest & realized gains

14. Real Returns

$$\begin{split} (1+r) &= (1+r_{rF}) \times (1+\pi) \times (1+RP) \\ (1+r_{real}) &= (1+r_{rF}) \times (1+RP) \text{ or } \\ (1+r_{real}) &= (1+r) \div (1+\pi) \end{split}$$

where,

r = Nominal return r_{rF} = Real risk-free return π = Inflation

RP = Risk premium

Learning Module 2:

The Time Value of Money in Finance

1. Present Value (PV) and Future Value (FV) Relation

$$FV_N = PV(1+r)^N$$

 $FV_N = PVe^{r_s \times N}$ (for continuous compounding)

$$PV = FV_t(1+r)^{-t}$$
 or $PV = \frac{FV_t}{(1+r)^t}$
 $PV = FV e^{-rt}$ (for continuous compounding)

PV for Fixed Income

2. Discount Instrument:

$$PV = \frac{FV_t}{(1+r)^t}$$

3. Coupon Instrument:

$$P = \frac{PMT_1}{(1+r)^1} + \frac{PMT_2}{(1+r)^2} ... \frac{PMT_N + FV_N}{(1+r)^1}$$

4. Perpetual Bond

$$PV = PMT/r$$

5. Annuity Instruments

$$A = \frac{r(PV)}{1 - (1+r)^{-t}}$$

A= periodic cash flow.

r = market interest rate per period.

PV = initial value/principal of the loan or bond.

t = total no. of payment periods.

PV for Equity

6. Constant Dividends

$$PV_t = \frac{D_t}{r}$$

7. Constant Dividend Growth Rate

$$D_{t+1} = D_t(1+g)$$
 $PV_t = \frac{D_t(1+g)}{(r-g)}$

assuming r - g > 0

8. Changing Dividend Growth Rate

$$PV_t = \sum_{i=1}^n \frac{D_t (1+g_s)^i}{(1+r)^i} + \frac{E(S_{t+n})}{(1+r)^n}$$
 where $E(S_{t+n})$ = stock value in n period

$$E(S_{t+n}) = \frac{D_{t+n+1}}{r-g_l}$$

9. Implied Return for Fixed-Income

Implied return:
$$\mathbf{r} = \left(\frac{FV_t}{PV}\right)^{1/t} - 1$$
PV (Coupon Bond) = $\sum_{i=1}^{N} \frac{PMT_i}{(1+r)}$

10. Implied Return and Implied Growth for Equity

Implied Return:
$$r = \frac{D_t(1+g)}{PV_t} + g$$

Implied Growth: $g = r - \frac{D_{t+1}}{PV_t}$

where
$$D_t(1+g) = D_{t+1}$$

11. Price-to-Earnings Ratio (P/E):

$$\frac{PV_t}{E} = \frac{D_t}{E_t} \times \frac{(1+g)}{r-g}$$

where

$$PV_t = \frac{D_t(1+g)}{r-g}$$

12. Forward P/E Ratio

$$\frac{PV_{t}}{E_{t+1}} = \frac{\frac{D_{t+1}}{E_{t+1}}}{r - g}$$

13. Cash Flow Additivity

Two-Year Bond Future Value:

$$FV_{2 \ vrs} = 1(1 + r_2)^2$$

14. Forward Exchange Rates

$$F = S_0 \times \frac{(1 + r_d)}{\left(1 + r_f\right)}$$

where

d = domestic currency

f = foreign currency

Learning Module 3

Statistical Measures of Asset Returns

Measures of Central Tendency

1. Arithmetic Mean: AM

$$AM = \frac{Sum \text{ of obvs in database}}{No. of obvs in the database}$$

2. Sample Mean \overline{X}

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

where,

 $X_i = i^{th}$ observation

N = no. of observations in the sample

3. Median = Middle Value

- For Even no of obvs locate median at $\frac{n}{2}$
- For Odd no. of obvs locate median at mean of $\frac{n}{2}$ and $\frac{(n+1)}{2}$

4. Mode

Observation that occurs most frequently in the distribution

5. Weighted Mean: X_w

$$\overline{X_w} = \sum_{i=1}^n w_i X_i = (w_1 X_1 + w_2 X_2 + + w_n X_n)$$

where.

 $X_1, X_2,...,X_n$ = observed values $w_1, w_2,...,w_3$ = Corresponding weights, sum to 1.

6. Geometric Mean: GM

GM =
$$\sqrt[n]{X_1 X_2 ... X_n}$$
 with $X_i \ge 0$ for $i = 1, 2, ... n$.

or

In G =
$$\frac{1}{n}$$
 In($X_1 X_2 X_3 ... X_n$)

or

$$In G = \frac{\sum_{i=1}^{n} In X_n}{n}$$

$$G = e^{lnG}$$

7. Harmonic Mean: H.M

$$H.M = \overline{X_H} = \frac{n}{\sum_{i=1}^{n} \left(\frac{1}{X_i}\right)}$$

with $X_i > 0$ for i = 1, 2, ..., n.

Measures of Location

8. Four Measures called Quantiles (collectively)

• Quartiles =
$$\frac{Distribution}{4}$$

• Quintiles =
$$\frac{Distribution}{5}$$

• Deciles =
$$\frac{Distribution}{10}$$

• Percentiles = L_y =
$$(n+1)\frac{y}{100}$$

Measures of Location

9. Range = Max. value - Min value

10. Mean Absolute Deviation: MAD

$$MAD = \frac{\sum_{i=1}^{n} |X_t - \bar{X}|}{n}$$

where,

 \bar{X} =Sample mean n=No. of observations in the sample

11. Sample Var: s²

$$S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$$

12. Sample Standard Deviation: S.D

Sample S.D = S =
$$\sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

13. Geometric vs. Arithmetic:

$$GM \approx AM - \frac{Variance \ of \ R}{2}$$

14. Semi-deviation (Semi S.D)

Semi S.D =
$$\sqrt{semivariance}$$
 =
$$\sqrt{\sum_{For\ all\ X_i \leq \bar{X}} \frac{(X_i - \bar{X})^2}{n-1}}$$

15. Target Semi Var

Target Semi-var =
$$\sum_{For\ all\ X_i \leq B} \frac{(X_i - B)^2}{n - 1}$$

CFA Level I 2024

Formula Sheet

where B = Target Value

16. Target Semi-Deviation

Target S.D =
$$\sqrt{\text{target semivariance}}$$

= $\sqrt{\sum_{For\ all\ X_i \le B} \frac{(X_i - B)^2}{n - 1}}$

17. Coefficient of Variation CV

$$CV = \left(\frac{S}{\bar{X}}\right)$$

where s= sample S.D and \bar{X} = sample mean

18. Excess Kurtosis = Kurtosis - 3

Correlation Between Two Variables

19. Sample Covariance

$$s_{XY} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{n - 1}$$

where,

n = sample size

 X_i = ith observation on variable X

 \bar{X} = mean of the variable X observations

 Y_i = ith observation on variable Y

 \overline{Y} = mean of the variable Y observations

20. Correlation coefficient: r

$$r_{XY} = \frac{\text{covariance of X and Y}}{\binom{\text{sample S. D}}{\text{of X}} \binom{\text{sample S. D}}{\text{of Y}}}$$
$$r = \frac{\text{cov(x,y)}}{\sqrt{\text{var(x)}\sqrt{\text{var(y)}}}}$$

Learning Module 4 Probability Trees and

Conditional Expectations

Expected Value of Random Variable E(X) E(w;Xi) = Probability-weighted average of

 $E(w_iX_i)$ = Probability-weighted average of the possible outcomes

2. Variance of a random variable $\sigma^2(X)$

$$\sigma^2(X) = E\{[X - E(X)]^2\}$$

3. Standard Deviation S.D

S.D =
$$\sqrt{\text{Variance}}$$

4. Conditional Expected Value: E(X|S)

of a random variable X given a scenario S

$$E(X|S) = P(X_1|S)X_1 + P(X_2|S)X_2$$

...+ $P(X_n|S)X_n$

5. Total Probability Rule

 $E(X) = E(X|S)P(S) + E(X|S^{c}) P(S^{c})$ $E(X) = E(X|S_{1})P(S_{1}) + E(X|S_{2})$ $P(S_{2}) + ... + E(X|S_{n}) P(S_{n})$

where,

 $E(X \mid S_i) = Expected value of X given Scenario i$

 $P(S_i)$ = Probability of Scenario i S_1 , S_2 ... S_n are mutually exclusive and exhaustive scenarios.

6. Bayes' formula

 $P(Event|New\ Information)$ $= \frac{P(New\ Information|Event)}{P(New\ Information)}$ $\times\ P(Prior\ prob.\ of\ Event)$

Learning Module 5 Portfolio Mathematics

1. Expected Value of Weighted Sum of random Variables

$$E(w_iR_i) = w_i E(R_i)$$

where,

wi = weight of variable i Ri = random variable i

2. Expected Return on the Portfolio

$$E(R_p) = E(w_1R_1 + w_2R_2 + ... + w_nR_n)$$

= $w_1E(R_1) + w_2E(R_2) + ... + w_nE(R_n)$

3. Covariance between R_i and R_i

$$Cov(R_i, R_f) = \sum_{i=1}^{n} [p(R_i - ER_i)(R_j - ER_f)]$$

4. Portfolio variance

$$\sigma^{2}(R_{p}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \omega_{i} \omega_{j} Cov(R_{i,}R_{j})$$

For three assets

$$\sigma^{2}(R_{p}) = w_{1}^{2}\sigma^{2}(R_{1}) + w_{2}^{2}\sigma^{2}(R_{2}) + w_{3}^{2}\sigma^{2}(R_{3}) + 2w_{1}w_{2}Cov(R_{1}, R_{2}) + 2w_{1}w_{3}Cov(R_{1}, R_{3}) + 2w_{2}w_{3}Cov(R_{2}, R_{3})$$

where.

CFA Level I 2024

Formula Sheet

 σ^2 = Corresponding variance of each asset in the portfolio

- 5. Correlation: $\rho(R_i R_j)$ (b/w two random variables R_i , R_j) $\rho(R_i R_j) = \frac{cov(R_i R_j)}{\sigma R_i \times \sigma R_j}$
- 6. Safety-first Ratio: SFRatio $SFRatio = [E(R_P) - R_L]/\sigma_P$
- 7. Sharpe Ratio: = $[E(Rp) - R_f]/\sigma_D$

Learning Module 6 Common Probability Distributions

For lognormal random variable

- 1. Mean: μ_L $\mu_L = \exp(\mu + 0.50\sigma^2)$
- 2. Variance: σ_L^2 $\sigma_L^2 = \exp(2\mu + \sigma^2) \times [\exp(\sigma^2) - 1]$.
- 3. Log Normal Price $S_T = S_0 \exp(r_{0,T})$

where, exp = e and $r_{0,t}$ = Continuously compounded return from 0 to T

4. Price Relative= End price/Beg price= S_{t+1}/ S_t=1 + R_{t, t+1}

where,

 $R_{t, t+1}$ = holding period return on the stock from t to t + 1.

5. Continuously compounded return (associated with a holding period from t to t + 1)

 $r_{t,\ t+1} = In(1 + holding\ period\ return) \\ or \\ r_{t,\ t+1} = In(price\ relative) = In\ (S_{t+1}/\ S_t) = \\ In\ (1 + R_{t,t+1})$

6. Continuously compounded return (associated with a holding period from 0 to T)

$$R_{0,T} = In (S_T / S_0) \text{ or } r_{0,T} = r_{T-1,T} + r_{T-2,T-1} + \dots + r_{0,1}$$

where,

 $r_{T-I, T}$ = One-period continuously compounded returns

7. When one-period continuously compounded returns are random variables.

$$E(r_{0,T}) = E(r_{T-1,T}) + E(r_{T-2,T-1}) + \cdots + E(r_{0,1}) = \mu T$$

$$Variance = \sigma^2(r_{0,T}) = \sigma^2 T$$

S.D. =
$$\sigma$$
 (r_{0.T}) = $\sigma\sqrt{T}$

8. Annualized volatility

= sample S.D. of one period continuously compounded returns × \sqrt{T}

Learning Module 7 Estimation and Inference

For Sample Mean

- 1. Var of the distribution = $\frac{\sigma^2}{n}$
- 2. S.D of the distribution = $\sqrt{\frac{\sigma^2}{n}}$
- 3. Standard Error of the sample mean:
 - When the population S.D (σ) is known = $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
 - When the population S.D (σ) is unknown = $s_{\overline{X}} = \frac{s}{\sqrt{n}}$

where s = sample S.D estimate of s =
$$\sqrt{sample\ variance}$$
 = $\sqrt{s^2}$
$$s^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$$

Learning Module 8 Hypothesis Testing

1. Standard Error of Sample Mean $\sigma_{\bar{X}}$ When Population S.D/variance is known $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

• Test statistic is **Z-distributed**

$$z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

2. Power of Test

= 1 - Prob of Type II Error

3. Test Statistic for a Test of Difference between Two Population Means

Normally Distributed Populations, Variances Unknown <u>but Assumed Equal</u>) based on <u>Independent</u> samples

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}\right)}}$$

where,

 S_p^2 = Pooled estimator of the common variance.

$$S_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$
 where $df = n_1 + n_2 - 2$.

4. Test Statistic for a test of mean differences

Normally distributed populations, unknown population variances

•
$$t = \frac{\bar{d} - \mu_{d0}}{S\bar{d}}$$

• sample mean difference = \overline{d} = $\frac{1}{n}\sum_{i=1}^{n} d_i$

- sample variance = $S_d^2 = \frac{\sum_{i=0}^n (d_1 \bar{d})^2}{n-1}$
- sample S.D = $\sqrt{S_d^2}$
- sample error of the sample mean difference = $s \overline{d} = \frac{s_d}{\sqrt{n}}$
- 5. Chi Square Test Statistic

For test concerning the value of a normal population variance

$$X^2 = \frac{(n-1)S^2}{\sigma_0^2}$$

where
$$(n-1) = df$$
 and $S^2 =$

$$sample \ variance = \frac{\sum_{i=0}^{n} (X_i - \bar{X})^2}{n-1}$$

6. Chi Square Confidence Interval for variance

Lower limit = L =
$$\frac{(n-1)S^2}{X_{a/2}^2}$$

Upper limit = U = =
$$\frac{(n-1)S^2}{X_{1-a/2}^2}$$

7. Test Statistic for a Test of Mean Differences

Normally Distributed Populations, Unknown Population Variances

$$t = \frac{\overline{d} - \mu_{d0}}{S_{\overline{d}}}$$

where,

- Sample mean difference = \bar{d} = $\frac{1}{n}\sum_{i=1}^{n} d_i$
- Sample variance $= S_d^2 = \frac{\sum_{i=1}^n (d_i \bar{d})^2}{n-1}$
- Sample S.D. = $\sqrt{s^2}_d$

- n = number of pairs of observations
- Standard error of sample mean difference = $s\bar{d} = \frac{S_d}{\sqrt{n}}$

8. F-test

Test concerning differences between variances of two normally distributed populations.

$$F = \frac{S_1^2}{S_2^2}$$

where

 $S_1^2 = 1$ st sample var with n_1 obs $S_1^2 = 2$ nd sample var with n_2 obs $df_1 = n_1 - 1$ numerator df $df_2 = n_2 - 1$ denominator df

Relation between Chi Square and Fdistribution

$$F = \frac{X_1^2/_m}{X_2^2/_m}$$

where

- X_1^2 is one chi square random variable with one m df.
- X_2^2 is another chi square random variable with one n df.

Learning Module 9 Hypothesis Testing

Parametric Test of a Correlation

1. Consider two variables X & Y

$$r_{XY} = \frac{s_{XY}}{s_X s_Y}$$

 s_{XY} = sample covariance between X & Y. s_X & s_Y = S.D of X and Y respectively

2. Sample Correlation: r

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$

3. Spearman Rank Correlation: r_s

$$r_{s} = 1 - \frac{6\sum_{i=1}^{n} d_{1}^{2}}{n(n^{2} - 1)}$$

- For small samples use table to find rejection points.
- For large sample size (n>30) use ttest as below:

$$t = \frac{(n-2)^{1/2} r_s}{(1 - r_s^2)^{1/2}}$$

4. Chi-Square Statistic: χ^2_s

Test of Independence

$$\chi^2 = \sum_{i=1}^{m} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

where

- Σ sum of all cells.
- \circ O_{ii} is observed frequency
- \circ $E_{i,i}$ is expected frequency

\circ E_{ij} = The expected frequencies

$$\bigcirc \quad E_{ij} = \frac{ (\textit{Total row i}) \times (\textit{Total row j}) }{\textit{Overall Total} }$$

 m = no. of cells, calculated by multiplying the no. of groups in the rows by the no. of groups in the columns.

Learning Module 10 Simple Linear Regression

1. Simple Linear Regression Y_i

$$Y_i = b_0 + b_1 X_i + \varepsilon_i$$

where,

Y = dependent variable

X = independent variable

 b_0 = intercept

 b_1 = slope coefficient

 ε = error term = $Y_i - \hat{Y}_i$

 b_0 and b_1 are called regression coefficients

2. Sum of Squares Error SSE

$$(SSE) = \sum_{i=1}^{n} (y_i - \hat{y})^2$$

as
$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i$$
 therefore
SSE = $\sum_{i=1}^n (Y_i - (\hat{b}_0 + \hat{b}_1 X_i))^2$

3. Slope Coefficient

$$\widehat{\mathbf{b}_1} = \frac{\mathrm{cov}(\mathbf{x}, \mathbf{y})}{\mathrm{var}(\mathbf{x})} = \frac{\sum (X_i - \overline{X})(Y_i - \overline{Y})}{\sum (X_i - \overline{X})^2}$$

4. Intercept bo

$$\widehat{b_0} = \overline{Y} - \widehat{b_1} \, \overline{X}$$

where

 \overline{Y} and \overline{X} are mean values

5. Sample correlation: r

$$r = \frac{Cov \ of \ Y \ and \ X}{(S.D \ of \ Y)((S.D \ of \ X))}$$

6. Covariance of X and Y: Cov_{XY}

$$Cov_{XY} = \frac{\sum_{i=1}^n (Y_i - \bar{Y}) \left((X_i - \bar{X}) \right)}{n-1}$$

7. Standard deviation of Y: S_Y

$$S_Y = \sqrt{\frac{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}{n-1}}$$

8. Squared residuals $E(\epsilon_i^2)$

$$E(\varepsilon_i^2) = \sigma_i^2$$
, $i = 1, ... n$

9. Sum of Squared Regression: SSR

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$

10. Coefficient of Determination: R²

$$R^{2} = \frac{\text{Sum of square regression}}{\text{Sum of square total}}$$
$$= \frac{\sum_{i=1}^{n} (\hat{Y} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}$$

(for single independent variable $R^2 = r^2$)

11. Mean square regression: MSR

$$MSR = \frac{Sum \ of \ square \ regression}{k}$$
$$= \frac{\sum_{i=1}^{n} (\hat{Y} - \overline{Y})^{2}}{1}$$

$$\mathsf{MSR} = \frac{sum\ of\ squares\ error}{n-k-1}$$

13. F-Statistic or F-Test

$$F = \frac{MSR}{MSE} = \frac{\frac{(Sum \ of \ square \ regression)}{k}}{\frac{(Sum \ of \ squares \ error}{n-k-1})}$$

(df numerator =
$$k = 1$$
)
(df denominator = $n - k - 1 = n - 2$)

14. ANOVA

ANOVA	SS	MSS	F
Regression df = 1	$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$	SSR k	$\frac{SSR/_k}{SSE/(n-k-1)}$
Error df = n-2	$SSE = \sum_{i=1}^{n} (y_i - \hat{y})^2$	$\frac{SSE}{n-k-1}$	
Total df = n-1	$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2$		

15. Test statistic

$$\mathsf{t} = \frac{\hat{b}_1 - B_1}{s_{\hat{b}_1}}$$

16. Standard error of slope coefficient: s_{h_a}

$$s_{\hat{b}_1} = \frac{s_e}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2}}$$

17. Standard error of the intercept: $s_{\hat{b}_1}$

$$s_{\hat{b}_1} = \sqrt{\frac{1}{n} + \frac{\bar{X}^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

18. Forecasted value of dependent variable: $\widehat{Y}f$

$$\widehat{Y}f = \widehat{b}_0 + \widehat{b}_1 X_f$$

19. Standard error of the intercept: S_f

$$s_f = s_e \sqrt{1 + \frac{1}{n} + \frac{(X_f - \bar{X})^2}{\sum_{i=1}^n (X_i - \bar{X})^2}}$$

20. Log-lin Model: $\ln Y_i$

$$ln Y_i = b_0 + b_1 X_i$$

21. Lin-log Model Y_i

$$Y_i = b_0 + \ln X_i$$

22. Log-log Model $\ln Y_i$

$$ln Y_i = b_0 + b_1 ln X_i$$

ECONOMICS

Learning Module 1 Firms and Market Structures

1. Break-Even Price

2. Concentration Ratio: CR

CR = Sum of sales values of the largest 10 firms / Total market sales

3. Herfindahl-Hirschman index: HHI

$$HHI = \sum X_i^2$$

where,

 X_{i^2} is squared market share of the i^{th} firm.

HHI = 1 for monopoly. $HHI \approx 0$ for a perfectly competitive industry.

Learning Module 2
Understanding Business Cycles